Schwarz Iterations for Symmetric Positive Semidefinite Problems
نویسندگان
چکیده
منابع مشابه
Schwarz Iterations for Symmetric Positive Semidefinite Problems
Convergence properties of additive and multiplicative Schwarz iterations for solving linear systems of equations with a symmetric positive semidefinite matrix are analyzed. The analysis presented applies to matrices whose principal submatrices are nonsingular, i.e., positive definite. These matrices appear in discretizations of some elliptic partial differential equations, e.g., those with Neum...
متن کاملSymmetric, Positive Semidefinite Polynomials Which
This paper presents a construction for symmetric, non-negative polynomials, which are not sums of squares. It explicitly generalizes the Motzkin polynomial and the Robinson polynomials to families of non-negative polynomials, which are not sums of squares. The degrees of the resulting polynomials can be chosen in advance. 2000 Mathematics Subject Classification: 12Y05, 20C30, 12D10, 26C10, 12E10
متن کاملDeterministic Symmetric Positive Semidefinite Matrix Completion
We consider the problem of recovering a symmetric, positive semidefinite (SPSD) matrix from a subset of its entries, possibly corrupted by noise. In contrast to previous matrix recovery work, we drop the assumption of a random sampling of entries in favor of a deterministic sampling of principal submatrices of the matrix. We develop a set of sufficient conditions for the recovery of a SPSD matr...
متن کاملAdditive Schwarz Iterations for Markov Chains
A convergence analysis is presented for additive Schwarz iterations when applied to consistent singular systems of equations of the form Ax = b. The theory applies to singular M -matrices with one-dimensional null space and is applicable in particular to systems representing ergodic Markov chains, and to certain discretizations of partial differential equations. Additive Schwarz can be seen as ...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2007
ISSN: 0895-4798,1095-7162
DOI: 10.1137/050644203